Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred.

Identifieur interne : 000091 ( Main/Exploration ); précédent : 000090; suivant : 000092

Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred.

Auteurs : Jiming Li [Pays-Bas] ; Like Fokkens [Pays-Bas] ; Lee James Conneely [Pays-Bas] ; Martijn Rep [Pays-Bas]

Source :

RBID : pubmed:32452643

Abstract

In Fusarium oxysporum f.sp. lycopersici, all effector genes reported so far - also called SIX genes - are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer strains.

DOI: 10.1111/1462-2920.15095
PubMed: 32452643


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred.</title>
<author>
<name sortKey="Li, Jiming" sort="Li, Jiming" uniqKey="Li J" first="Jiming" last="Li">Jiming Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fokkens, Like" sort="Fokkens, Like" uniqKey="Fokkens L" first="Like" last="Fokkens">Like Fokkens</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conneely, Lee James" sort="Conneely, Lee James" uniqKey="Conneely L" first="Lee James" last="Conneely">Lee James Conneely</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rep, Martijn" sort="Rep, Martijn" uniqKey="Rep M" first="Martijn" last="Rep">Martijn Rep</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32452643</idno>
<idno type="pmid">32452643</idno>
<idno type="doi">10.1111/1462-2920.15095</idno>
<idno type="wicri:Area/Main/Corpus">000246</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000246</idno>
<idno type="wicri:Area/Main/Curation">000246</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000246</idno>
<idno type="wicri:Area/Main/Exploration">000246</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred.</title>
<author>
<name sortKey="Li, Jiming" sort="Li, Jiming" uniqKey="Li J" first="Jiming" last="Li">Jiming Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fokkens, Like" sort="Fokkens, Like" uniqKey="Fokkens L" first="Like" last="Fokkens">Like Fokkens</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conneely, Lee James" sort="Conneely, Lee James" uniqKey="Conneely L" first="Lee James" last="Conneely">Lee James Conneely</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rep, Martijn" sort="Rep, Martijn" uniqKey="Rep M" first="Martijn" last="Rep">Martijn Rep</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH</wicri:regionArea>
<orgName type="university">Université d'Amsterdam</orgName>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region>Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental microbiology</title>
<idno type="eISSN">1462-2920</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Fusarium oxysporum f.sp. lycopersici, all effector genes reported so far - also called SIX genes - are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer strains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32452643</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-2920</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Environmental microbiology</Title>
<ISOAbbreviation>Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1462-2920.15095</ELocationID>
<Abstract>
<AbstractText>In Fusarium oxysporum f.sp. lycopersici, all effector genes reported so far - also called SIX genes - are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer strains.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jiming</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fokkens</LastName>
<ForeName>Like</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Conneely</LastName>
<ForeName>Lee James</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rep</LastName>
<ForeName>Martijn</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3608-6283</Identifier>
<AffiliationInfo>
<Affiliation>Molecular Plant Pathology, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>201504910768</GrantID>
<Agency>Chinese Scholarship Council</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>016.veni.181.090</GrantID>
<Agency>Nederlandse Organisatie voor Wetenschappelijk Onderzoek</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Microbiol</MedlineTA>
<NlmUniqueID>100883692</NlmUniqueID>
<ISSNLinking>1462-2912</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32452643</ArticleId>
<ArticleId IdType="doi">10.1111/1462-2920.15095</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Akimitsu, K., Tsuge, T., Kodama, M., Yamamoto, M., and Otani, H. (2014) Alternaria host-selective toxins: determinant factors of plant disease. J Gen Plant Pathol 80: 109-122.</Citation>
</Reference>
<Reference>
<Citation>Anderson, C., Khan, M.A., Catanzariti, A.-M., Jack, C.A., Nemri, A., Lawrence, G.J., et al. (2016) Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 17: 667.</Citation>
</Reference>
<Reference>
<Citation>Bertazzoni, S., Williams, A.H., Jones, D.A., Syme, R.A., Tan, K.-C., and Hane, J.K. (2018) Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic fungi. Mol Plant Microbe Interact 31: 779-788.</Citation>
</Reference>
<Reference>
<Citation>Bourras, S., Praz, C.R., Spanu, P.D., and Keller, B. (2018) Cereal powdery mildew effectors: a complex toolbox for an obligate pathogen. Curr Opin Microbiol 46: 26-33.</Citation>
</Reference>
<Reference>
<Citation>Bryan, G.T., Wu, K.-S., Farrall, L., Jia, Y., Hershey, H.P., McAdams, S.A., et al. (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the Rice blast resistance gene pi-ta. Plant Cell 12: 2033-2045.</Citation>
</Reference>
<Reference>
<Citation>Camacho, J.P.M., Sharbel, T.F., and Beukeboom, L.W. (2000) B-chromosome evolution. Philos Trans R Soc B Biol Sci, B-chromosome evolution 355: 163-178.</Citation>
</Reference>
<Reference>
<Citation>Coleman, J.J., Rounsley, S.D., Rodriguez-Carres, M., Kuo, A., Wasmann, C.C., Grimwood, J., et al. (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5: e1000618.</Citation>
</Reference>
<Reference>
<Citation>Croll, D., and McDonald, B.A. (2012) The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog 8: e1002608.</Citation>
</Reference>
<Reference>
<Citation>Croll, D., Zala, M., and McDonald, B.A. (2013) Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet 9: e1003567.</Citation>
</Reference>
<Reference>
<Citation>de Jonge, R., Peter van Esse, H., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., et al. (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329: 953-955.</Citation>
</Reference>
<Reference>
<Citation>de Wit, P.J.G.M. (2016) Cladosporium fulvum effectors: weapons in the arms race with tomato. Annu Rev Phytopathol 54: 1-23.</Citation>
</Reference>
<Reference>
<Citation>Dong, S., Raffaele, S., and Kamoun, S. (2015) The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 35: 57-65.</Citation>
</Reference>
<Reference>
<Citation>Farman, M.L., and Leong, S.A. (1998) Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics 150: 1049.</Citation>
</Reference>
<Reference>
<Citation>Fernandez, J., and Orth, K. (2018) Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic growth. Trends Microbiol 26: 582-597.</Citation>
</Reference>
<Reference>
<Citation>Fokkens, L., Shahi, S., Connolly, L.R., Stam, R., Schmidt, S.M., Smith, K.M., et al. (2018) The multi-speed genome of Fusarium oxysporum reveals association of histone modifications with sequence divergence and footprints of past horizontal chromosome transfer events. bioRxiv. https://doi.org/10.1101/465070.</Citation>
</Reference>
<Reference>
<Citation>Galazka, J.M. and Freitag, M. (2014) Variability of chromosome structure in pathogenic fungi - of ‘ends and odds.’ Curr Opin Microbiol 20: 19-26, Variability of chromosome structure in pathogenic fungi - of ‘ends and odds’.</Citation>
</Reference>
<Reference>
<Citation>Ghanbarnia, K., Fudal, I., Larkan, N.J., Links, M.G., Balesdent, M.-H., Profotova, B., et al. (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Mol Plant Pathol 16: 699-709.</Citation>
</Reference>
<Reference>
<Citation>Ghanbarnia, K., Ma, L., Larkan, N.J., Haddadi, P., Fernando, W.G.D., and Borhan, M.H. (2018) Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. Mol Plant Pathol 19: 1754-1764.</Citation>
</Reference>
<Reference>
<Citation>Gout, L., Fudal, I., Kuhn, M.-L., Blaise, F., Eckert, M., Cattolico, L., et al. (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60: 67-80.</Citation>
</Reference>
<Reference>
<Citation>Habig, M., Quade, J., and Stukenbrock, E.H. (2017) Forward genetics approach reveals host genotype-dependent importance of accessory chromosomes in the fungal wheat pathogen Zymoseptoria tritici. MBio 8: e01919.</Citation>
</Reference>
<Reference>
<Citation>Hammond-Kosack, K.E., Tang, S., Harrison, K., and Jones, J.D.G. (1998) The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal Avirulence gene product Avr9. Plant Cell 10: 1251-1266.</Citation>
</Reference>
<Reference>
<Citation>He, C., Rusu, A.G., Poplawski, A.M., Irwin, J.A.G., and Manners, J.M. (1998) Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150: 1459-1466.</Citation>
</Reference>
<Reference>
<Citation>Hedges, D.J., and Deininger, P.L. (2007) Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res Mol Mech Mutagen 616: 46-59.</Citation>
</Reference>
<Reference>
<Citation>Houterman, P.M., Cornelissen, B.J.C., and Rep, M. (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4: e1000061.</Citation>
</Reference>
<Reference>
<Citation>Houterman, P.M., Ma, L., van Ooijen, G., de Vroomen, M.J., Cornelissen, B.J.C., Takken, F.L.W., and Rep, M. (2009) The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 58: 970-978.</Citation>
</Reference>
<Reference>
<Citation>Johnson, L.J., Johnson, R.D., Akamatsu, H., Salamiah, A., Otani, H., Kohmoto, K., and Kodama, M. (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40: 65-72.</Citation>
</Reference>
<Reference>
<Citation>van Dam, P., Fokkens, L., Ayukawa, Y., van der Gragt, M., ter Horst, A., Brankovics, B., et al. (2017) A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci Rep 7: 9042.</Citation>
</Reference>
<Reference>
<Citation>van der Does, H.C., Duyvesteijn, R.G.E., Goltstein, P.M., van Schie, C.C.N., Manders, E.M.M., Cornelissen, B.J.C., and Rep, M. (2008) Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol 45: 1257-1264.</Citation>
</Reference>
<Reference>
<Citation>van der Does, H.C., Fokkens, L., Yang, A., Schmidt, S.M., Langereis, L., Lukasiewicz, J.M., et al. (2016) Transcription factors encoded on core and accessory chromosomes of Fusarium oxysporum induce expression of effector genes. PLoS Genet 12: e1006401.</Citation>
</Reference>
<Reference>
<Citation>van der Does, H.C., and Rep, M. (2012) Horizontal transfer of supernumerary chromosomes in fungi. Methods Mol Biol 835: 427-437.</Citation>
</Reference>
<Reference>
<Citation>Joosten, M.H.A.J., Vogelsang, R., Cozijnsen, T.J., Verberne, M.C., and De Wit, P.J.G.M. (1997) The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors. Plant Cell 9: 367-379.</Citation>
</Reference>
<Reference>
<Citation>Kanzaki, H., Yoshida, K., Saitoh, H., Fujisaki, K., Hirabuchi, A., Alaux, L., et al. (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72: 894-907.</Citation>
</Reference>
<Reference>
<Citation>Kashiwa, T., Kozaki, T., Ishii, K., Turgeon, B.G., Teraoka, T., Komatsu, K., and Arie, T. (2017) Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum. Fungal Genet Biol 98: 46-51.</Citation>
</Reference>
<Reference>
<Citation>Kruger, J. (2002) A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296: 744-747.</Citation>
</Reference>
<Reference>
<Citation>Li, J.-M., Fokkens, L., van Dam, P., and Rep, M. (2020) Related mobile pathogenicity chromosomes in Fusarium oxysporum determine host range on cucurbits. Mol Plant Pathol 21: 761.</Citation>
</Reference>
<Reference>
<Citation>Liang, P., Liu, S., Xu, F., Jiang, S., Yan, J., He, Q., et al. (2018) Powdery mildews are characterized by contracted carbohydrate metabolism and diverse effectors to adapt to obligate biotrophic lifestyle. Front Microbiol 9: 3160.</Citation>
</Reference>
<Reference>
<Citation>Lorrain, C., Gonçalves dos Santos, K.C., Germain, H., Hecker, A., and Duplessis, S. (2019) Advances in understanding obligate biotrophy in rust fungi. New Phytol 222: 1190-1206.</Citation>
</Reference>
<Reference>
<Citation>Ma, L.-J., van der Does, H.C., Borkovich, K.A., Coleman, J.J., Daboussi, M.-J., Di Pietro, A., et al. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in fusarium. Nature 464: 367-373.</Citation>
</Reference>
<Reference>
<Citation>Ma, L., Houterman, P.M., Gawehns, F., Cao, L., Sillo, F., Richter, H., et al. (2015) The AVR2-SIX5 gene pair is required to activate I-2 -mediated immunity in tomato. New Phytol 208: 507-518.</Citation>
</Reference>
<Reference>
<Citation>Masel, A.M., He, C., Poplawski, A.M., Irwin, J.A.G., and Manners, J.M. (1996) Molecular evidence for chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mol Plant Microbe Interact 9: 5.</Citation>
</Reference>
<Reference>
<Citation>Meena, M., Gupta, S.K., Swapnil, P., Zehra, A., Dubey, M.K., and Upadhyay, R.S. (2017) Alternaria toxins: potential virulence factors and genes related to pathogenesis. Front Microbiol 8: 1451.</Citation>
</Reference>
<Reference>
<Citation>Miao, V.P., Covert, S.F., and Vanetten, H.D. (1991) A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254: 1773.</Citation>
</Reference>
<Reference>
<Citation>Möller, M., Habig, M., Freitag, M., and Stukenbrock, E.H. (2018) Extraordinary genome instability and widespread chromosome rearrangements during vegetative growth. Genetics 210: 517-529.</Citation>
</Reference>
<Reference>
<Citation>Möller, M., Schotanus, K., Soyer, J.L., Haueisen, J., Happ, K., Stralucke, M., et al. (2019) Destabilization of chromosome structure by histone H3 lysine 27 methylation. PLos Genet 15: e1008093.</Citation>
</Reference>
<Reference>
<Citation>Peng, Z., Oliveira-Garcia, E., Lin, G., Hu, Y., Dalby, M., Migeon, P., et al. (2019) Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 15: e1008272.</Citation>
</Reference>
<Reference>
<Citation>Petit-Houdenot, Y., Degrave, A., Meyer, M., Blaise, F., Ollivier, B., Marais, C., et al. (2019) A two genes - for - one gene interaction between Leptosphaeria maculans and Brassica napus. New Phytol 223: 397-411.</Citation>
</Reference>
<Reference>
<Citation>Petre, B., Joly, D.L., and Duplessis, S. (2014) Effector proteins of rust fungi. Front Plant Sci 5: 416.</Citation>
</Reference>
<Reference>
<Citation>Plaumann, P.-L., Schmidpeter, J., Dahl, M., Taher, L., and Koch, C. (2018) A dispensable chromosome is required for virulence in the Hemibiotrophic plant pathogen Colletotrichum higginsianum. Front Microbiol 9: 1005.</Citation>
</Reference>
<Reference>
<Citation>Plissonneau, C., Daverdin, G., Ollivier, B., Blaise, F., Degrave, A., Fudal, I., et al. (2016) A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol 209: 1613-1624.</Citation>
</Reference>
<Reference>
<Citation>Plissonneau, C., Rouxel, T., Chèvre, A.-M., Van De Wouw, A.P., and Balesdent, M.-H. (2018) One gene-one name: the AvrLmJ1 avirulence gene of Leptosphaeria maculans is AvrLm5. Mol Plant Pathol 19: 1012-1016.</Citation>
</Reference>
<Reference>
<Citation>Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., et al. (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66: 513-545.</Citation>
</Reference>
<Reference>
<Citation>Raffaele, S., and Kamoun, S. (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10: 417-430.</Citation>
</Reference>
<Reference>
<Citation>Rep, M., Van Der Does, H.C., Meijer, M., Van Wijk, R., Houterman, P.M., Dekker, H.L., et al. (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53: 1373-1383.</Citation>
</Reference>
<Reference>
<Citation>Rep, M., Meijer, M., Houterman, P.M., van der Does, H.C., and Cornelissen, B.J.C. (2005) Fusarium oxysporum evades I-3-mediated resistance without altering the matching Avirulence gene. Mol Plant Microbe Interact 18: 15-23.</Citation>
</Reference>
<Reference>
<Citation>Rooney, H.C.E. (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308: 1783-1786.</Citation>
</Reference>
<Reference>
<Citation>Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, D.-J., Thomma, B.P., and Mesters, J.R. (2013) Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. Elife 2: 1.</Citation>
</Reference>
<Reference>
<Citation>Saur, I.M.L., Bauer, S., Kracher, B., Lu, X., Franzeskakis, L., Müller, M.C., et al. (2019) Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. Elife 8: e44471.</Citation>
</Reference>
<Reference>
<Citation>Schmidt, S.M., Houterman, P.M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., et al. (2013) MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 14: 119.</Citation>
</Reference>
<Reference>
<Citation>Schotanus, K., Soyer, J.L., Connolly, L.R., Grandaubert, J., Happel, P., Smith, K.M., et al. (2015) Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenet Chromatin 8: 41.</Citation>
</Reference>
<Reference>
<Citation>Selin, C., de Kievit, T.R., Belmonte, M.F., and Fernando, W.G.D. (2016) Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front Microbiol 7: 600.</Citation>
</Reference>
<Reference>
<Citation>Shahi, S., Beerens, B., Bosch, M., Linmans, J., and Rep, M. (2016) Nuclear dynamics and genetic rearrangement in heterokaryotic colonies of Fusarium oxysporum. Fungal Genet Biol 91: 20-31.</Citation>
</Reference>
<Reference>
<Citation>Stergiopoulos, I., and de Wit, P.J.G.M. (2009) Fungal effector proteins. Annu Rev Phytopathol 47: 233-263.</Citation>
</Reference>
<Reference>
<Citation>Strom, N.B., and Bushley, K.E. (2016) Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons. Fung Biol Biotechnol 3: 4.</Citation>
</Reference>
<Reference>
<Citation>Sweigard, J.A., Carroll, A.M., Kang, S., Farrall, L., Chumley, F.G., and Valent, B. (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7: 1221-1233.</Citation>
</Reference>
<Reference>
<Citation>Takken, F.L.W., van Wijk, R., Michielse, C.B., Houterman, P.M., Ram, A.F.J., and Cornelissen, B.J.C. (2004) A one-step method to convert vectors into binary vectors suited for agrobacterium-mediated transformation. Curr Genet 45: 242-248.</Citation>
</Reference>
<Reference>
<Citation>Tsuge, T., Harimoto, Y., Akimitsu, K., Ohtani, K., Kodama, M., Akagi, Y., et al. (2013) Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 37: 44-66.</Citation>
</Reference>
<Reference>
<Citation>Vanheule, A., Audenaert, K., Warris, S., van de Geest, H., Schijlen, E., Höfte, M., et al. (2016) Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genomics 17: 670.</Citation>
</Reference>
<Reference>
<Citation>Vlaardingerbroek, I., Beerens, B., Rose, L., Fokkens, L., Cornelissen, B.J.C., and Rep, M. (2016a) Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum. Environ Microbiol 18: 3702-3713.</Citation>
</Reference>
<Reference>
<Citation>Vlaardingerbroek, I., Beerens, B., Schmidt, S.M., Cornelissen, B.J.C., and Rep, M. (2016b) Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici. Mol Plant Pathol 17: 1455-1466.</Citation>
</Reference>
<Reference>
<Citation>Vlaardingerbroek, I., Beerens, B., Shahi, S., and Rep, M. (2015) Fluorescence assisted selection of transformants (FAST): using flow cytometry to select fungal transformants. Fungal Genet Biol 76: 104-109.</Citation>
</Reference>
<Reference>
<Citation>Williams, A.H., Sharma, M., Thatcher, L.F., Azam, S., Hane, J.K., Sperschneider, J., et al. (2016) Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 17: 191.</Citation>
</Reference>
<Reference>
<Citation>Van de Wouw, A.P., Lowe, R.G.T., Elliott, C.E., Dubois, D.J., and Howlett, B.J. (2014) An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Mol Plant Pathol 15: 523-530.</Citation>
</Reference>
<Reference>
<Citation>Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., et al. (2009) Association genetics reveals three novel Avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21: 1573-1591.</Citation>
</Reference>
<Reference>
<Citation>Zhang, S., and Xu, J.-R. (2014) Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathog 10: e1003826.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Hollande-Septentrionale</li>
</region>
<settlement>
<li>Amsterdam</li>
</settlement>
<orgName>
<li>Université d'Amsterdam</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Hollande-Septentrionale">
<name sortKey="Li, Jiming" sort="Li, Jiming" uniqKey="Li J" first="Jiming" last="Li">Jiming Li</name>
</region>
<name sortKey="Conneely, Lee James" sort="Conneely, Lee James" uniqKey="Conneely L" first="Lee James" last="Conneely">Lee James Conneely</name>
<name sortKey="Fokkens, Like" sort="Fokkens, Like" uniqKey="Fokkens L" first="Like" last="Fokkens">Like Fokkens</name>
<name sortKey="Rep, Martijn" sort="Rep, Martijn" uniqKey="Rep M" first="Martijn" last="Rep">Martijn Rep</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000091 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000091 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32452643
   |texte=   Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32452643" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020